If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84t^2+49t=0
a = 84; b = 49; c = 0;
Δ = b2-4ac
Δ = 492-4·84·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-49}{2*84}=\frac{-98}{168} =-7/12 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+49}{2*84}=\frac{0}{168} =0 $
| x=11/2=3/8 | | -3(u+2)=-3(6u-1)+3u | | 5(2^n–2)=5(2^3n+10) | | 3500-26x=3929-37x | | -2(x+7)=x-2+2(6x+3) | | -4(-7y+4)-4y=6(y-1)-1 | | (5b-9)-2(2b+2)=-7 | | 4.8p+3.6+4.7-2.83=5.2+3.9p | | 31/2a+3=3 | | y/3-2=6 | | 5014x^2+58x-30=1 | | y3-2=6 | | 6m=14m- | | 4a-7=-6a- | | 150=300-5s | | x*0.5^x=10^-8 | | 2x+5x=2+5 | | 12/15÷x=11 | | 2(x-2)=2x+6-4(-3x-2) | | 162-w=259 | | -16X+8y=-8 | | 45-k=28 | | 27=3x+5 | | 1/2(13)h=100.75 | | 9(x-1)^2=16 | | 12+m/3=5 | | -4=12-8x | | 128=16t^2+64t-48 | | -6n-11=25 | | x+-8=1 | | 33/2+3y/5=7y/10 | | 4r*4r+48=4r+24+4r*4r-8r |